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Result

Which 15 described m more detail by Jarvelin and Kekalamen [5), and measures
the goodness of the ranking list (obtained by the application of the scoring
function). Mistakes in the top-most ranks have a bigger impact on the DCG
neasure value. This s useful and important to us because we will not suggest
all possible refactoring candidates, but only the highest-ranked ones. Given
a long method, m, with refactoring candidates, C;, suppose that , is the
ranking list on C; and y,, the set of manually determined grades, then, the
DCG at position k is defined as DOG(E) = 3.0, < cwn(m(m where
G() s an exponential gain fanction, D(:) is a posi
and ;) i the position of refactoring c
2%~ Land D(xi()) = itz T
comparable with measures f other long methods, we divide this DCG by the
DGG the  palctraing wou v ttaind, Thesics, G NDOG B
candidate ranking will 2 [0.1], where the NDCG of 1 can only be
obtained by perfec rankings. | valuation, we consider the NDCG value
of the last position so that all ranks are taken into account. See Hang (1] for
further details

1.3 Approach

We discuss our approach to improve the scoring fuction in order to find the
best suggestions for extract method refactoring.

1.3.1 Extract Method Refactoring Candidates

In our previous work [#], we presented an approach to derive extract method
refiactoring suggestions automatically for long methods. The main steps are:
generating valid extract method refactoring candidates, ranking the candi-
dates, and pruning the candidate list,

In the following, a refactoring candidate is a sequence of statements that
can be extracted from a method into a new method. The remainder is the
method that contains all the statements from the original method after ap-
plying the refactoring, plus the call of the extracted method. The suggested
refactorings will help to improve the readability of the code and reduce its
complexity, hecause these are main reasons for developers to initiate code
refactoring

We derived refactoring candidates from the control and data flow gray
of a method using the Continuous Quality Assessment Toolkit (ConQATH)
open source software. We filtered out all invalid candidates, that is those that
violate precondionsthat need o bo fulflled for extract metbod reacoring
(for details, sce (12]). The second step of our approach was to rank the valid

v congat.org

0.878, whereas for SVM-rank 1t 1s U790, Therelore, the scoring lunction tound
by ListMLE performed better than the scoring function found by SVM-rank.

Table 1.2: Coefficients of Variation for Learned Coefficients

RQ2: How stable are the learned scoring functions?

Table [1.3 shows the average, minimum and maximum coefficients of varia-
m (OV) fr th learoed cocficients for LIAMLE ad for SVM-rek. Srall
CVa indicate that in relative terms the results from the sl uns
10-cross fold procedure did not vary a lot, whereas big CVs e big it
ferences between the learned coefficients. As the CV of the smglc features
from ListMLE are much smaller than those of SVM-rank, the cocfficients of
LitMLE ars moch mor stabls comparsd with SV mak. SVM-rak shres
coefficients with a big variance between the single iterations of the validatior
proceas: that i, despite the heavy overlapping o th training st the leamned
coefficients vary a lot and can hardly be generalized.

RQ3: Can the scoring function be simplifi

Figure [L.4 shows a plot of the averaged NDCG measure for all 12 runs. Re-
member that we actually had three length measures, and we considered the
absolute and the relative values for all of them, As the reduction of the mum-
ber of statements led to  higher NDCG for ListMLE (which outperformed
SVM-rank with respect to NDCG), we chose to use it as our length mea-
re. In practice, that scems sensible since., while LoC also count cmpty and
commented lines, the mumber of statements only counts real code.

Avg NDCG

LoC Token Stat.
Length Measure

Fig. 1.4: Averaged NDCG When Considering Only One Length Measure

by Hitering out very similar candidates, i order to obtain essentially ditterent.
suggestions.

Tn the present paper, we focus on the ranking of candidates, and especially
on the scoring function that defines that ranking.

1.3.2 Scoring Function

We aimed for an optimized scoring function that is capable of ranking extract
method refactoring candidates, so that top-most ranked candidates are most
likely to be chosen by developers for an extract method refactoring. The scor-
ing function is a linear function that caleulates the dot product of a coefficient
veetor, ¢, and a feature value vector, f, for cach candidate. Candidates are
arranged in decreasing order of their score.

In this paper, we use a basis of 20 features for the scoring function. In
the following, we give a short overview about the features. There are three
o fature:complesity-relatd features, paranmcters, and sracturl

categori
ntormation.
Ve illustrate the feature values with reference to two example refactoring
candidgtes (Cy and C3) that were chosen from the example method given in
FigurelL8 The gray aree shows the sestingare, wich s deined belor. The
white numbers specify the nesting depth of the corresponding statement.

Fig. 1.1: Example Method with Nesting  Tuble 1.1: Features and Values
:l';m of Statements And Example Can- iy Example
idates

Complezity-related features

We mainly focused on reducing complexity and increasing readabilty. For
v indicators, we used length, nesting and data flow information. For

on the ranking performance and removed 1t 1 the next iteration. A scoring
function that only considered the mumber of input parameters and length and
nesting area reduction still had an average NDCG of 0.885.

RQ4: How does the learned scoring function compare with our manually
determined one?

The scoring function that we presented in [ achieved a NDCG of 0.891,
which s better than the best scoring function learned in this evaluation.

1.4.4 Discussion

Our results show that, in the initial ran of the learning to rank tools, features
indicating a reduction of complexity are much more relevant for the rankin
and therefore have a comparatively high impact. Furthermore, the stability
of ListMLE is higher on our data set than the stability of SVM-rank. For
SVM-rank there is a big variance in the learned coefficients, which might also
e a reason for the comparatively lower performance measure values.

The results for RQ3 show that it is passible to achieve a great simplification
without big reductions in the ranking performance. The biggest influences on
The ranking performance were the retetion of the umber of statcmenta, the
reduction of nesting area (both are complexity indicators), and the number
of input parameters.

As . the learned s
d not Lmlpufurm the manually determined scoring functon| rmm our pre-
vious work. Obviously, the learning tools were not able to find optimal co-
iients for the foatuses. To improve the scorng function rom our provi
ous work, we did manual experiments that were influenced by the results of
ListMLE and SVM-rank, and evaluated the results using the whole learning
data set.

We were able o find several scoring funcions that had only » handful
of features and a better ranking performance than our scoring
previous work (column “Previous' in Table [3). In addition mmn o mrm
important features that we obtained in the answer to RQ3 (features #3, #7,
#10), we also took the comment features (#14-17) into consideration. The
main differences between the previous scoring function and the manally in-
‘proved one from this paper are the length reduction measure, the omission of
nesting depth, and the number of output parameters.

By taking the results of ListMLE and SVM-rank into consideration, we
were able to find a coefficient vegtor such that the scoring function achieved
a NDCG of 0.894 (sce Table ). That means that we were able o find a
better scoring function when we combined the findings of our previous work
with the learned coefficients from this paper.
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» act method refactoring is a common way 1o shorten long me
in software development. Tt improves code readabilty, reduces complexity, e
one of the most frequently used refactorings. Nevertheless, sometimes develo

it because identifying an appropri of statements that
0 & new method is error-prone and time-consuming,

a previous work, we presented  method that could be used o automat-
ieally derive extract method refactoring suggestions for long Java methods, tl
encrated useful suggestions for developers. The approach relies on n sco

s anke ll i rfactoing hat is,
Sitable candidates for an extact meshod refctoring at co
eclopers. Even though the cvauation b shown that the iugg\:umu are useful
fo devloper,there i o nck of nderstanding of the wcoing function, In i pa-
lo scoring feat

rds: Learning to Rank, Refactoring Suggesti
ing, Long Method

1.1 Introduction

Along method is a bad smell i @, and
read. understand and test. A straight-forward way ohllouemng long methods
is 10 extract parts of them into a new method. This procedure s called ‘extract
method refactoring’, and is the most often used refactoring in practice

The process of extracting a method can be partially automated by using
modern development. environments, such as Eclipse TDE or TntelliJ TDEA,
that can put a set of extractable statements into a new method. However,
developers still need to find this set of statements by themseles, which takes

Teduction of the method length (With respect to the longest method ater the
refactoring). We considered length based on the mumber of lines of code (LoC),
on the mumber of tokens, and on the mumber of statements — all of them as
both absolute values and relative to the original method length.

Wa conider bighy nstad mathods 8 more comples than moderately
nested ones, and use two features to represent the reduction of
duction of nesting depth and reduction of nesting area. The nesting area of a
method with statements Sy to S, each having & nesting depth of di,,is de-
fined to be o The ke of nsting arca comenfrom the are o
the single statements of pretty printed code (sce the gray areas in Figure 1.1)

flow information can also indicate complexity. We have features rep-

resenting the number variables that are read, written or read and written.

Parameters

We considered the number of input and output parameters as an of
data coupling between the original and the extracted methods, which we want.
to keep low using our suggestions. The more parameters that are needed for

a set of statements to be extracted from a method, the more the statements
will depend on the rest of the original method.

Structural information

Finally, we have some features that represent structural aspects of the co
A design principle for code is that methods should process only one thing

Methods that follow this principle are casier to understand. As developers
often put blank lines or comments between blocks of code that process some-
thing else, we use features representing the existence and the number of blank
or commented lines at their beginning, or at their end. Additionally, for first
statement of the candidate, we check t0 see whether the type of the preceding
is the same; and for the last statement, we check to sce whether the type of
the following statement is the same. Our last feature considers a structural
complexity indicator — the mumber of branching statements in the candidate.

1.3.3 Training and Test Data Generation

To be able to learn a scoring function, we need training and test data. We
derived this data by manually ranking approximately 1,000 extract method
refactoring suggestions. To obtain this learning data, we selected 13 Java
open source systems from varions domains, and of different sizes. We consider
a method to be "long’ if it has more than 40 LoC. From each project we
andoniy sleted 15 ong methods, Fo cach method, wo randonily slcted

. where the number he

ethod length.

1.5 Threats to Validity

Learning from data sources that are either too similar o too small means
Khat thers e & chancnthat o gearalzation o e et postl. T have
enough data to enable us to learn a scoring function that can rank extract
method refactoring candidates, we chose 13 Java open source projects from
various domains and from each project we randomly selected 15 long o
We manually reviewed the long methods, and filtered out those that wer
Sppropdate o the xtrac method. From the 177 remainng loog ml o,

ndomly chose five to nine valid refactoring suggestions, depending on
The metho longth, W onsured that our larming datn did not contin any
from redundant data.

vidual, which is a threat
commonly agreed way on how to shorten a long
method, and therefore no single ranking eriterion exists. The ranking was
done very carefully, with the aim of reducing the complexity and increasing
the readability and understandability of the code as much as possible: so,
the scoring function should provide a ranking such that we can make further
efactoring suggestions with the same aim.

relied on two learning to rank tools, which represents another threat
to validity. The learned scoring functions heavily depend on the tool. As the
learned scoring functions vary, it is ¥ to hiave an independent way of
evaluating the ranking performance of the learned scoring functions. We used
the widely used measure NDCG to evaluate the scoring functions, and applied
2 10-fold cross validation procedure to obtain a meaningful evaluation of the
ranking performance of the learned scoring function.

at to external validity is the fact that we derived our learning data

from 13 open source Java systems. Therefore, results are not necessarily gen-
eralizable.

1.6 Related Work

In our previous work (3], we presented an automatic approach to derive ex-
tract method refactoring suggestions for long methods. We obtained valid

ienced developers sometmes select stalements UIAL CAIOL De extracted (1o
example, when several output parameters are required, but are not supported
by the programming language)
process can be improved by which
statements could be extracted into a new method. The literature presents
several approaches that can be used to find extract method refactorings. In
a previous work, we suggested a method that could be used to automatica)
find good extract method refactoring candidates for long Java methods
Our first prototype, which was derived from manual experiments on several
rce systems, implemented a scoring function to rank refactoring can-
didaten. The st of o xslation s s i (i i proto
suggestions that are followed by experienced developers. The results of
et protorye have becn implemented i o Industrin sftware qualy amal.
tool.

Problem statement. The scoring function is an essential part of our ap-
proach to derive extract method refactoring suggestions for long methods.
for the quality of our suggestions, and also important for the
complesity ofthe implementaton of the rfatoring g, Hoveer it s
currently unclear how good the scoring function actually performs in ranking
elnctoring suggestions and how muh complexity will be nccded 10 hain
useful suggestions. Thercfore, in order to enhance our work, we need a deep
understanding of the scoring function.

Contribution. We do further research on the scoring function of our ap-
proach to derive extract method refactoring suggestions for long Java meth-
. Wo e earing 0 rank techuiues in ordee (o e which etares of
the scoring function are relevant, to get meaningful refact
10 keep the scorng function s shuple a4 pocsible. I dkion, we cvl-
uate the ranking performance of our previous scoring function, and compare
it with the new scoring function that we learned. For the machine learning
setting, we use 177 training and testing data sets that we obtained from 13
well-known open source systems by manually ranking five to nine randomly
selected valid refactoring candidates

Tn this paper, we show how we derived better extract method refactoring
suggestions than in our previous work using learning to rank tools,

1.2 Fundamentals

‘We use learning to rank techniques to obtain a scoring function that is able to
sk estact method efctor s, and use normalized discounted

NDCG) met performance. In this
scetion, we explain the tech tools and metrics that we use in this paper.

1nto the code. ‘Lherelore, 1n the pruning step of our Approach, we usually hiter
out candidates that need more than three input parameters, thus avoiding the
“long parameter list” mentioned by Fow woi learning that too many
input parameters are bad, we considered only candidates that had less than
fous i paremetas,

We raak theselectod candidates mamilly with respect 0 complecey
reduction and readability improvement. The higher the ranki
candidate, the better the suggestion was for s

of the randomly selected methods were not suitable for an extract

method refactoring. That was most commonly the case when the code would
not benefit. from the extract method. but from other refactorings. In addition,
for some methods, we could not derive a meaningful ranking because there

1c only very weak candidates. That is why we did not use 18 of the 195
randomly selected long methods to learn our scoring function

1.4 Evaluation

In this section, we present and evaluate the results from the learning proce-
dure.

1.4.1 Research Questions

RQI: What are the results of the learning tools? In order to get
sorog funcian thet s cxpable of rusking the extract metbod refctring
learning to rank tools that implement dif-
ferent pponchcn, ndthat had performed well i previons st
RQ2: How stable are the learned scoring functions? To be able to
derive implications for a real-world scoring function, the coefficients of the
learned scoring function should not vary a lot during the 10-fold eross evalu-
ation procedure.

RQ3: Can the scoring function be simplified? For practical reasons,
i el Lo v scoring fuction with  limited wsber of fstures
Additionally, reducing the search space may increase the performance of the
Icarning 10 Fank toos - sesltng i bette acorng functions.

RQ4: How does the learned scoring function compare with our man-
ually determined one? In our previous work, we derived a scoring function
by manual experiments. Now we can use our learning data set to cvaluate
the ranking performance of the previously defined scoring function, and to
compare it with the learned one.

TOn hetp://sn. tun.do/-haas/12s_emxe_data. zig| we provide our rankings and

All valid relactoring candidates were ranked by a manually-determined scor-
ing function that aims to reduce code complexity and increase readability. In
the present work, we have put the scoring function on more solid ground by
Jeaning . coring function from many long metkods, and manunly ranked
refactoring sugges

T the crstne, here are several appronches hat lea (0 st
most beneficial refactorings — usually for code clones. Wang and Godfrey (1
propose an automated appronch to ecommend clones or efactoring by
ing a decision-tree based classifier, C4.5. They use 15 features for decision-tree
model training, where four consider the cloning relationship, four the context.
of the clone, and seven relate 0 the code of the clone. T the present paper,
we have used a similar approach, but with a different aim: instead of clones,
we have focused on long methods.

Mondl et al. 10 rank clons fo relactoring through mining asociation
rules. Their idea is that clones that are often changed together to maintain
8 sl fnctionaly aro worthy Candidate for refactong. Thlr prootypo

MARC, identi are often changed together i
anc mines assacition rults Among thos. A major Fesut of thls caluntion
on thirteen software systems is that clones that are highly ranked by MARC
are important refactoring possibilities. We used learning to rank techniques to
find a scoring function that is capable of ranking extract method refactoring
candidates from long methods.

train-

1.7 Conclusion and Future Work

In this paper, we have presented an approach to derive a scoring function that
is able to rank extract method refactoring suggestions by applying learning
to rank tools. The scoring function can be used to automatically rank extract
method refactoring candidates, and thus present a set of best refactoring sug-
gestions to developers. The resulting scoring function needs less parameters
than previous scoring functions but has a better ranking performance.

In the future, we would like to suggest sets of refactorings, especially those
that remove clones from the code.

We would also like to find out whether the scoring fung
suggestions for object-oriented programming languages other than Java and
whether other features need to be considered in that case.
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Learning to rank refers to machine learning techniques for training the model
in a ranking task [1].
here e several learning to rank approaches, where the pairwise and the

approac! approach learns by comparing two training ob-
cts anl thlr given ranks (ground truh'). wherens in ou case he Tisowise
approach learns from the list of al given rankings of refactoring sugsestions
for a long method. Liu et al. [§] pointed out that the pairwise and the listwise
approaches usually perform beter than the pointwise a relore,
we do not rely on a pointwise approach but use pairwise and listwise learning
to rank tools
o ..| i3] constructed a benchmark collection for research on several
cari ank tools on the Learning To Rank (LETOR) data set. Their
e suppor the s polii tht potvie appronches perfon by con.
pared with pairwise and listwise approaches. i, listwise approaches
often porforns better than prirwise. flguever, SVMrn, o paievise ke
o rank Lol by Taochantaedis o a1, performs e wel and the e cxc
et o o data 6t bt SV ok sy e 1 0 teresting
results. We set the parameter ~c to 0.5 and the paraucter -# to 5,000 as a
trade-off between time consumption and learning performance.
Beside SVM-rank, we used a listwise learning to rank tool, ListMLE by
Xia et al E;]. In their evaluation, they showed that ListMLE performs better
than ListNet by Cgo et al. (1], which was also considered to be good by Qin
et al.. Lan et al. [f improved the leaming capabilty of ListMLE, but did
ot provide binaries or source code; s0 we were unable to use the fmproved
ListMLE needs to be assigned a tolerance rate and a learning rate. In
a scries of experiments we performed, we found that the optimal ran
performance on our data set was with a tolerance rate of 0.001 and a learning,
rate of 1E-1

1.2.2 Training and Testing.

"his et progefs cnssted of o seps: sl s esting, Wo sl
cromalidtion (1] with 10 sts, that i, we apit ot learning data ino 10
sets of (nearly) equal size. We etormed 10 esation wsing these st whcre
nine of the sets were considered to be training data and one set was used as
test data.

Test data is used
function by ug the grade of a ? i ined by the
Joaraed coring function with ts grade given by th learing data. Wo use
NDCG metric to compare different scoring functions and their performances

To answer RQ1 and RQ2, we used the learning to rank tools SVM-rank and
ListMLE to perform a 10-fold cross validation on our training and test data
set of 177 long methods, and a total of 1,185 refactoring candidates. We il-
Iustrate the stability of the single coefficients by using box plots that show
iow the coefficients are distributed over the ten iterations of the 10-fold cross
lidution.

o ansver RQ3, we simplife the learne soring function by omitting
features, where the selection criterion for the omitted features s preservation
of the ranking capability of e seoring functon. Our il eatue st con-
tained six different measures of length. For the sake of simplicity, we would
Y t0 bave nly one mesause of ngth n ou sering uncton. To ind out
ure best its in with our tra . we re-ran the validation pro-
Cedure (ugai i LIGILE and SVALask) bt i e with only one
h measurement. using each of the length measurements one at a time.

We continued with the feature set reduction ntil only one feature was left.

1.4.3 Results

The following paragraphs answer the research questions.

RQI: What are the results of the learning tools?

Figures 13 and [L show the results of the 10-fold cross validation for ListMLE

and for SVALank, resectively. Foreacsingl fenture, ,there i  box plot
of the corresponding coef
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What is Different to Other Study Projects?

e More Freedom
— Topic
— Own research
— You define schedule and pace

e Requires high level of self-organization

e Better opportunities for personal growth



Personal Conclusion

e My GR was on my ,, mental Stack” during my entire studies in the Master’s program
e GR got me out of my comfort zone

e Learned a lot on research methodologies and practical application of machine
learning techniques

e Working on my research topic was fun for me

e | would doitagain ©
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Timo Pawelka]
Automartische Erkennung der Sprache von Quelltext-Kommentaren
Bachelor’s Thesis, not published

Timo Pawelka,'ilmarjuergens:
s This Code Written in English? A Study of the Natural Language of Comments and Identifiers in Practice.

Proceedings of the 31st International Conference on Software Maintenance and Evolution (ICSME'15), 2015.
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Raphael N6mmer,homan Haas
est Suite Minimization
Guided Research, to be published in Conference Proceedings of SWQD ‘20

%aphael Nommer
esign and Evaluation of Regression Test Suite Minimization Techniques
Master’s Thesis




Funding

Costs 1k€ — 5k€
e Travel and accomodation costs
e Conference fee

Funding sources (often mixed)
e Travel Subsidies

e Chairs

e DAAD scholarships

e e.g., CQSE

Decision processes take long, so organize this early!



Agenda

1. Motivation
2. Preparation

3. Doing the work



Get the Most out of your GR?!

e GR provides the opportunity to publish scientific work at a scientific venue.
e Nevertheless, formally, you do not need to publish anything

e My recommendation: aim for a scientific publication
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What If | have no Topic in Mind?

e Ask potential advisors for ideas
— Advisor from Bachelor’s Thesis
— Lectures
— Seminars
— Lab courses

e As an advisor, | do not expect
— Students to come up with thesis topics
— Students to apply only for documented topics

e |f you have a rough idea, discuss it with potential advisors



Services Research

Development Audits Software Quality
Operations Quality Control e.g., Coding, Testing




For Students

Forschungsarbeiten @ CQSE

Register

Jakob Rott

~ Jetzt anmelden

Jakob Rott « Roman Haas gate Garchinger Technologie- und Griinderzentrum —

01. February 2024 17:00 - 19:00




Requirements for a GR topic

e |sthere a clear problem statement?

e (Can different solutions be evaluated objectively?

Why?

e Decision making while you work on it
e Easier to convince advisor

e Easier to convince program chair

Even more important for a GR than BA/MA
More info: www.thesisguide.org
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http://www.thesisguide.org/

What Makes a Good Guided Research Advisor

e Needs to have publishing experience

e Has already succesfully published
(ideally on the same workshop if you
aim for a publication)

e Sources: scholar.google.com, DBLP,
personal webpage

Roman Haas 7

CQSE GmbH
Bestatigte E-Mail-Adresse bei cqse.eu

TITEL :

Is static analysis able to identify unnecessary source code?
R Haas, R Niedermayr, T Roehm, S Apel
ACM Transactions on Software Engineering and Methodology (TOSEM) 29 (1), 1-23

Deriving extract method refactoring suggestions for long methods
R Haas, B Hummel
International Conference on Software Quality, 144-155

Teamscale: tackle technical debt and control the quality of your software
R Haas, R Niedermayr, E Juergens
2019 IEEE/ACM International Conference on Technical Debt (TechDebt), 55-56

How can manual testing processes be optimized? developer survey, optimization
guidelines, and case studies

R Haas, D Elsner, E Juergens, A Pretschner, S Apel

Proceedings of the 29th ACM Joint Meeting on European Software Engineering ...

An Evaluation of Test Suite Minimization Techniques
R Noemmer, R Haas
International Conference on Software Quality, 51-66

Learning to rank extract method refactoring suggestions for long methods
R Haas, B Hummel
International Conference on Software Quality, 45-56

Recommending Unnecessary Source Code Based on Static Analysis
R Haas, R Niedermayr, T R6hm, S Apel
2019 IEEE/ACM 41st International Conference on Software Engineering ...
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Agenda

1. Motivation
2. Preparation

3. Doing the work



View as an Advisor

E1X, a11, ?

? Regular meeting

Meeting on demand



ICSE 2021

ICSE 2021 received 615 submissions.

602 papers went through
a thorough review process
the program
committee decided to accept 138 papers
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Write for the Reviewer

e Make problem statement and contribution very clear

e Use established outline (e.g., see thesisguide)

e Make text easily readable. This is hard and exhausting work. But you can learn it,
this is no issue of talent.


https://thesisguide.org/2014/10/13/thesis-architecture/

My Personal Best Practices

e Block writing time

e Begin with outline

e Separate writing from improving

e Write complete paragraphs before improving them

e |Let text,cool down and proof-read it later again

e There is not the one silver-bullet way of writing



English Writing Center

e Free one-to-one consulting with native English speakers
— GR, Thesis, Homework, CV etc.
— Text needs not to be ready

https://www.sprachenzentrum.tum.de/sprachen/englisch/english-writing-center/



https://www.sprachenzentrum.tum.de/sprachen/englisch/english-writing-center/
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Learning to Rank Extract Method Refactoring
Suggestions for Long Methods

Roman Haas' and Benjamin Hummel®

! Technical University of Munich, Lichtenbergstr. 8, Garching, Germany
roman.haastitum de

? CQSE GmbH, Lichtenbergstr. 8, Garching, Germany
hummel@icgse.en

Summary. Extract method refactoring is a common way to shorten long methods
in software development. It improves code readability, reduces complexity, and is
one of the most frequently used refactorings. Nevertheless, sometimes developers

rienced developers sometimes select statements that cannoi. be exiracted {lor
example, when several output parameters are required, but are not supported
by the programming language) [ﬂ]

The refactoring process can be improved by suggesting to developers which
statements could be extracted into a new method. The literature presents
several approaches that can be used to find extract method refactorings. In
a previous work, we suggested a method that could be used to automatically
find good extract method refactoring candidates for long Java methods [3]
Our first prototype, which was derived from manual experiments on several
open source systems, implemented a seoring function to rank refactoring can-
didates, The result of our evaluation has shown that this first prototype finds
suggestions that are followed by experienced developers, The results of our
first prototype have been implemented in an industrial software quality anal-
ysis tool

Problem statement. The scoring funetion is an essential part of our ap-
proach to derive extract method refactoring sugges for long methods,
1t s decisive for the quality of our suggestions, and akso important for the

refrain from applying it because identifying an iate set of that
can be extracted into a new method is error-prone and time-consuming

In & previous work, we presented a method that could be used to automat-
ically derive extract method refactoring sugeestions for long Java methods, that
generated useful suggestions for developers. The approach relies on a seoring func-
tion that ranks all valid refactoring possibilities (that is, all candidates) to identify
suitable candidates for an extract method refactoring that could be suggested to
developers. Even though the evaluation has shown that the sugges
for developers, there is a lack of understanding of the scoring function. In this pa-
per, we present research on the single scoring features, and their importance for the
ranking capability. In addition, we evaluate the ranking capability of the suggested
scoring function, and derive a better and less complex one using learning to rank
techniques.

ons are useful

Key words: Learning to Rank, Refactoring Suggestion, Extract Method Refactor-
ing, Long Method

1.1 Introduction

Along method is a bad smell in software systems (2], and makes code harder to
read, understand and test. A straight-forward way of shortening long methods
i t0 extract parts of them into a new method. This proecdur is called "extraet
method refactoring’, and is the most often used refactoring in pr:lrtirr‘w

The process of extracting a method can be partially by using

of the i of the suggester. However, it is
currently unclear how good the scoring function actually performs in ranking
refactoring suggestions and how much complexity will be needed to obtain
useful suggestions. Therefore, in order to enhance our work, we need a deeper
understanding of the scoring function.

Contribution. We do further research on the scoring function of our ap-
proach to derive extract method refactoring suggestions for long Java meth-
ods. We use learning to rank techniques in order to learn which features of
the scoring function are relevant, to get meaningful refactoring suggestions,
and to keep the scoring function as simple as possible. In addition, we eval-
te the ranking performance of our previous scoring function, and compare
with the new scoring function that we learned. For the machine learning
setting, we use 177 training and testing data sets that we obtained from 13
well-known apen source systems by manually ranking five to nine randemly
selected valid refactoring candidates.

In this paper, we show how we derived better extract method refactoring
suggestions than in our previons work using learning to rank tools.

1.2 Fundamentals

‘We use learning to rank techniques to obtain a scoring function that is able to
rank extract method refactoring candidates, and use normalized discounted

modern development environments, such as Eclipse IDE or Intellil IDEA,
that can put a set of extractable statements into a new method. However,
developers still need to find this set of statements by themselves, which takes

mio the code, Uherelore, in the prumng siep of our approach, we usually hiter
out candidates that need more than three input parameters, thus aveiding the
“long parameter list’ mentioned by Fowler [2]. To avoid learning that too many
input are bad, we i only that had less than
four input parameters,

Ve ranked the selected candidates manually with respect to complexity
reduction and readability improvement. The higher the ranking we gave a
candidate, the better the suggestion was for us.

Some of the randomly selected methods were not suitable for an extract
method refactoring. That was most commonly the case when the code would
not benefit from the extract method, but from other refactorings. In addition,
for some methods, we could not derive a meaningful ranking because there
were only very weak candidates. That is why we did not use 18 of the 195
randomly selected long methods to learn our scoring function !

1.4 Evaluation

In this section, we present and evaluate the results from the learning proce-
dure.

1.4.1 Research Questions

RQ1: What are the results of the learning tools? In order to Sc( a

gain (NDCG) metrics to evaluate the ranking performance. In this
section, we explain the techniques, tools and metrics that we use in this paper.

To answer RQ1 and RQ2, we used the learning to rank tools SYM-rank and
ListMLE to perform a 10-fold cross validation on our training and test data
set of 177 long methods, and a total of 1,185 refactor candidates. We il-
lustrate the stability of the single coefficients by using box plots that show
how the coefficients are distributed over the ten iterations of the 10-fold eross
validation.

To answer RQ3, we simplified the learned scoring function by omitting
features, where the selection criterion for the omitted features is preservation
of the ranking capability of the scoring function. Our initial feature set con-
tained six different measures of length. For the sake of simplicity, we would
like to have only one measure of length in our scoring function, To find out
which measure best fits in with our training set, we re-ran the validation pro-
cedure (again using ListMLE and SVM-tank), but this time with only one
length measurement, using each of the length measurements one at a time.
‘We continued with the feature set reduction until only one feature was left.

1.4.3 Results
The following paragraphs answer the research questions.
RQ1: What are the results of the learning tools?

Figures L3 and [L4 show the results of the 10-fold cross validation for ListMLE
and for SVAL-rauk, respectively. For each single feature, i, there is a box plot

scoring function that is capable of ranking the extract method
candidates, we decided to use two learning to rank tools that implement d;l-
ferent approaches, and that had performed well in previons studies.

RQ2: How stable are the learned scoring functions? To be able to
derive implications for a real-world scoring function, the coefficients of the
learned scoring function should not vary a lot during the 10-fold cross evalu-
ation procedure.

RQ3: Can the scoring function be simplified? For practical reasons,
it is useful to have a scoring function with a limited number of features.
Additionally, reducing the search space may increase the performance of the
learning to rank tools — resulting in better scoring functions.

RQ4: How does the learned scoring function compare with our man-
ually determined one? T our previous work, we derived a scoring function
by manual experiments. Now we can use our learning data set to evaluate
the ranking performance of the previously defined scoring function, and to
compare it with the learned one.

 On http://in. tun.de/-haas/12r_emrc_data.zip we provide our rankings and
the corresponding code bases from which we gencrated the refactoring candidates.
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Fig. 1.2 Learning Result From  Fig. 1.3: Learning Result From
ListMLE With All Features SVM-rank With All Features

Learning to rank refers to machine learning techniques for training the model
in a ranking task [1]

There are several learning to rank approaches, where the pairwise and the
listwise approach usually perform better than common pointwise regression
approaches [§]. The pairwise approach learns by comparing two training ob-
jeets and their given ranks (‘ground truth’), whereas in our case the listwise
approach learns from the list of all given rankings of refactoring suggestion:
for a long method. Lin et al. 8] pointed out that the pairwise and the listwise
approaches usually perform better than the pointwise approach. Thercfore.
we do not rely on a pointwise approach but use pairwise and listwise learning
to rank tools.

Qin et al. 15] constructed a benehmark collection for research on several
learning to rank tools on the Learning To Rank (LETOR) data set. Thei
results support the hypothesis that pointwise approaches perform badly cor
pared with pairwise and listwise approaches. In addition, listwise approaches
often perform better than pairwise. However, SVM-rank, a pairwise learning
to rank tool by Tsochantardis et al. (18], performs quite well and the first ex-
periments on our data set showed that §VAM-rank may lead us to interesting
results. We st the parameter —¢ to 0.5 and the paramcter —# to 5,000 as a
trade-off between time consumption and learning performance.

Beside SVM-rank, we used a listwise learning to rank tool, ListMLE by
Xia et al. [21]. In their evaluation, they showed that ListMLE performs better
than ListNet by Cao et al. [1], which was also considered to be good by Qin
et al.. Lan et al. improved the learning capability of ListMLE, but did
not provide binaries or source code; so we were unable to use the improved
ven

ion.
ListMLE needs to be assigned a tolerance rate and a learning rate. In
a series of experiments we performed, we found that the optimal ranking
performance on our data set was with a tolerance rate of 0.001 and a learning
rate of 1E-15.

1.2.2 Training and Testing

The learning progess consisted of two steps: training and testing, We applied
cross-validation [ﬁ with 10 sets, that is, we split our learning data into 10
sets of (nearly) equal size. We performed 10 iterations using these sets, where
nine of the sets were considered to be training data and one set was used as
test data.

est data is used o evaluato the ranking performance of the leared scoring
function by the grade of a " by the
learned scoring function with its grade given by the learning data. We use
NDCG metric to compare different scoring functions and their performances.

U873, whereas for 3V M-rank it is 0.7, ‘L herelore, the scoring function tound
by ListMLE performed better than the scoring function found by SVM-rank.

Table 1.2: Coefficients of Variation for Learned Coefficients

RQ2: How stable are the learned scoring functions?

Table E shows the average, minimum and maximum coefficients of varia-
tion (CV) for the learned coefficients for ListMLE and for SVM-rank. Small
CVs indicate that in relative terms the results from the single runs in the
1i-cross fold procedure did not vary a lot, whereas big CVs indicate big dif-
ferences between the learned coefficients. As the CVs of the single features
from ListMLE are much smaller than those of SVM-rank, the coefficients of
ListMLE are much more stable compared with SVM-rank. SVM-rank shows
coefficients with a big variance between the single iterations of the validation
process; that is, despite the heavy overlapping of the training sets, the learned
coefficients vary a lot and can hardly be generalized.

RQ3: Can the scoring function be simplified?

Figure B shows a plot of the averaged NDCG measure for all 12 runs. Re-
member that we actually had three length measures, and we considered the
absolute and the relative values for all of them. As the reduction of the nu
ber of statements led to a higher NDCG for ListMLE (which outperformed
SVM-rank with respect to NDCG), we chose to use it as our length mea-
sure. In practice, that seems sensible since, while LoC also count empty and
commented lines, the number of statements only counts real code.

B8 ListMLE (abs)
B8 ListMLE (rel)

B2 SVM-rank (abs)
B8 SVM-rank (rel)

Avg NDCG

LoC Token Stat.
Length Measure

Fig. 1.4: Averaged NDCG When Considering Only One Length Measure

whieh 15 described in more detail by Jarvelin and Kekalaimen [3], and measures
the goodness of the ranking list (obtained by the application of the scoring
function). Mistal n the top-most ranks have a bigger impact on the DCG
measure value. This is useful and important to us because we will not suggest
all possible refactoring candidates, but only the highest-ranked ones, Given
a long method, m;, with refactoring candidates, C;, suppose that 7, is the
ranking list on C; and y;, the set of manually determined grades, then, the
DCG at position k is defined as DOG(K) = ¥ o G)D(mi(4)), where
G() is an exponential gain function, D() is a position discount function,
and 7,(j) is the position of refactoring candidate, <, in 7. We set G(j)
2001 = 1 and D(mi(})) = fzzprizgy - To normalize the DOG, and to make it
comparable with measures of other long methods, we divide this DCG by the
DCG that a perfect ranking would have obtained. Therefore, the NDCG for a
candidate ranking will always be in [0, 1], where the NDCG of 1 ean only be
obtained by perfect rankings. In our evaluation, we consider the NDCG value
of the last position so that all ranks are taken into account. See Hang (1] for
further details.

1.3 Approach

We discuss our approach to improve the scoring function in order to find the
best suggestions for extract method refactoring.

1.3.1 Extract Method Refactoring Candidates

In our previous work [3], we presented an approach to derive extract method
refactoring suggestions automatically for long methods. The main steps are:
generating valid extract method refactoring candidates, ranking the candi-
dates, and pruning the candidate list.

In the following, a refuctoring candidate is a sequence of statements that
can be extracted from a method into a new method. The remainder is the
method that contains all the statements from the original method after ap-
plying the refactoring, plus the call of the extracted method. The suggested
refactorings will help to improve the readability of the code and reduce its
complexity, ﬁu’mlw these are main reasons for developers to initiate code
refactoring

We derived refactoring candidates from the control and data flow gr:
of a method using the Continuous Quality Assessment Toolkit (ConQATH)
open source software. We filtered out all invalid candidates, that is those that
violate preconditions that need to be fulfilled for extract method refactoring
(for details, see [12]). The second step of our approach was to rank the valid

lwww congat .org

on the ranking performance and removed 1t m the next ieration. A scormeg
function that only considered the number of input parameters and length and
nesting area reduction still had an average NDCG of 0.885.

RQ4: How does the learned scoring function compare with our manually
determined one?

The scoring function that we presented in [ achioved a NDCG of 0.891,
h is better than the best scoring function learned in this evaluation.

1.4.4 Discussion

Our results show that, in the initial run of the learning to rank tools, features
indicating a reduction of complexity are much more relevant for the ranking,
and therefore have a comparatively high impact. Furthermore, the stability
of ListMLE is higher on our data set than the stability of SVM-rank. For
SVM-rank there is a big variance in the learned coefficients, which might also
be a reason for the comparatively lower performance measure values,

The results for RQ3 show that it is possible to achieve a grea
without big reductions in the ranking performance. The biggest
the ranking performance were the reduction of the number of statements, the
reduction of mesting area (both are complexity indicators), and the number
of input parameters

Manual improvement As already mentioned, the learned scoring functions
did not outperform the manually determined scoring function from our pre-
vious work. Obviously, the learning tools were not able to find optimal co-
efficients for the features. To improve the scoring function from our previ-
ous work, we manual experiments that were influenced by the results of
ListMLE and SVM-rank, and evaluated the results using the whole learning
data set.

‘We were able to find several scoring functions that had only a handful
of features and a better ranking performange than our scoring function from
previous work (column "Previous™ in Table @). In addition to the three most
important features that we obtained in the answer to RQ3 (features #3, #7,
#10), we also took the comment features (#14-17) into consideration. The
main differences between the previous seoring funetion and the manually im-
proved one from this paper are the length reduction measure, the omission of
esting depth, and the number of output parameters,

By taking the results of ListMLE and SVM-rank into consideration, we
were able to find a coefficient tor such that the scoring function achieved
IL

a NDCG of 0.894 (see Table [L.3). That means that we were able to find a
better scoring function when we combined the findings of our previous work
with the learned coefficients from this paper.

by hitermg out very similar candidates, 1n order to obtam essentially dilferent
suggestions.

In the present paper, we focus on the ranking of candidates, and especi
on the scoring function that defines that ranking.

ly

1.3.2 Scoring Function

‘We aimed for an optimized scoring function that is capable of ranking extract
method refactoring can: es, 50 that top-most ranked candidates are most
likely to be chosen by developers for an extract method refactoring, The scor-
ing function is a linear function that caleulates the dot product of a coefficient
vector, ¢, and a feature value veetor, f, for each candidate. Candidates are
arranged in decreasing order of their

In this paper, we use a basis of 20 features for the scoring funetic
the following, we give a short overview about the features. There are three

reduction of the method length (with respect Lo the longest method atter ihe
refactaring). We considered length based on the number of lines of code (LoC),
on the number of tokens, and on the number of statements — all of them as
both absolute values and relative to the original method length.

We consider highly nested methods as more complex than moderately
nested ones, and use two features to represent the reduction of nesting: re-
duction of nesting depth and reduction of nesting area. The nesting area of a
method with statements Sy to Sy, each having a nesting depth of dg, , is de-
fined to be 371, ds,. The idea of nesting area comes from the area alon
the single statements of pretty printed code (see the gray areas in Figu )

Dataflow information can also indicate complexity. We have features rep-
resenting the number variables that are read, written or read and written.

Parameters

We dered the number of input and output parameters as an indicator of

of feature: plexity-related features, and
information
‘We illustrate the feature values with reference to two example refactoring
candid; (Cy and C) that were chosen from the example method given in
Figure |1l The gray area shows the nesting area, which is defined below. The
white numbers Np(‘(lfy the nesting depth of the corresponding statement.

puvls

& complex(int a, boolaan b) ¢ T T

30 & Dranch St _ime

Fig. 1.1: Example Method with Nesting
Area of Stats

Table 1.1: Features and Values

ents And Example Cane iy Exanple
didates
Complerity-related features
We mainly focused on reducing ity and i i il For

complexity indicators, we used length, nesting and data flow information. For

vioun Learned Tmproved

o731

1.5 Threats to Validity

Learning from data sources that are either too similar or too small means
that there is a chance that no generalization of the results is possible. To have
enough data to enable us to learn a scoring function that can rank extract
method refactoring candidates, we chose 13 Java open source projects from
various domains and from each project we randomly selected 15 long methods,
We manually reviewed the long methods, and filtered out those that were not
appropriate for the extract method. From the 177 remaining long methods,
we randomly chose five to nine valid refactoring suggestions, depending on
the method length. We ensured that our learning data did not contain any
code clones to avoid learning from redundant data,

The manual ranking was performed by a single individual, which is a threat
to validity since there is no commonly agreed way on how to shorten a long
method, and therefore no single ranking criterion exists. The ranking was
done very carefully, with the aim of reducing the complexity and increasing
the readability and understandability of the code as much as possible; so,
the scoring function should provide a ranking such that we can make further
refactoring suggestions with the same aim,

We relied on two learning to rank tools, which represents another threat
to validity. The learned scoring functions heavily depend on the tool. As the
learned scoring functions vary, it is necessary to have an independent way of
evaluating the ranking performance of the learned scoring functions, We used
the widely used measure NDCG to evaluate the sco
a 10-fold cross validation
ranking performance of the learned scoring function.

A threat to external validity is the fact that we derived our learning data
from 13 open source Java systems. Therefore, results are not neces
eralizable.

to obtain a of the

1.6 Related Work

Tn our previous work
tract method refacto

we presented an automatic approach to derive ex-
ng suggestions for long methods, We obtained valid

data coupling between the original and the extracted methods, which we want
t0 keep low using our suggestions. The mere parameters that are needed for
t of statements to be extracted from a method, the more the statements
will depend on the rest of the original method.

Struetural information

Finally, we have some features that represent structural aspects of the co

A design principle for code is that methods should process only one thing

Methods that follow this principle are easier to understand. As developers
often put blank lines or comments between blocks of code that process some-
thing else, we use features representing the existence and the number of blank
or commented lines at their beginning, or at their end. Additionally, for first
statement of the candidate, we check to see whether the type of the preceding
the same; and for the last statement, we check to see whether the type of
the following statement is the same. Our last feature considers a structural
complexity indicator — the number of branching statements in the candidate

1.3.3 Training and Test Data Generation

To be able to learn a scoring function, we need training and test data. We
derived this data by manually ranking approximately 1,000 extract method
refactoring suggestions. To obtain this learning data, we selected
open source systems from varions domains, and of different sizes. We con
a method to be 'long’ if it has more than 40 LoC. From each proj
randomly selected 15 long methods. For each method, we randomly selected
valid refactoring candidates, where the number of candidates depended on the
method length

All valid refactormg candidates were ranked by a manually-determined scor-
ing function that aims to reduce code complexity and increase readability. In
the present work, we have put the scoring function on more solid ground by
learning a scoring function from many long methods, and manually ranked
refactoring suggestions.

In the literature, there are several approaches that learn to suggest t
ost beneficial refactorings — usually for code clones, Wang and Godfrey
propose an automated approach to recommend clones for refactoring by train-
g a decision-tree based classifier, C4.5. They use 15 features for decision-tree
model training, where four consider the cloning relationship. four the context
of the clone, and seven relate to the code of the clone. In the present paper,
we have used a similar approach, but with a different aim: instead of clones,
we have focused on long methods.

Mondal et al. [10] rank elones for
l‘ulc Tlleir idm is that clones that are often changed wgetlmr to maintain
il ity are worthy candi for refactoring. Their prototype
lnnL MA RC, identifies clones that are often changed together in a similar way,
1d mines association rules among these. A major result of their evaluation
on thirteen software systems is that clones that are highly ranked by MARC
are important refactoring possibilities. We used learning to rank techniques to
find a scoring function that is capable of ranking extract method refactoring
candidates from long methods.

1.7 Conclusion and Future Work

In this paper, we have presented an approach to derive a scoring function that
is able to rank extract method refactoring suggestions by applying learning
to rank tools. The scoring function can be used to automatically rank extract
method refactoring candidates, and thus present a set of best refactoring sug-
gestions to developers. The resulting scoring funetion needs less parameters
than previous scoring functions but has a better ranking performance.

In the future, we would like to suggest sets of refactorings, especially those
that remove clones from the code.

‘We would also like to find out whether the scoring function provides good
suggestions for object-oriented programming languages other than Java and
whether other features need to be considered in that case.
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